Random Truncations of Haar Distributed Matrices and Bridges

نویسنده

  • C. DONATI-MARTIN
چکیده

Let U be a Haar distributed matrix in U(n) or O(n). In a previous paper, we proved that after centering, the two-parameter process T (s, t) = ∑ i≤⌊ns⌋,j≤⌊nt⌋ |Uij | 2 converges in distribution to the bivariate tied-down Brownian bridge. In the present paper, we replace the deterministic truncation of U by a random one, where each row (resp. column) is chosen with probability s (resp. t) independently. We prove that the corresponding two-parameter process, after centering and normalization by n converges to a Gaussian process. On the way we meet other interesting convergences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncations of Haar distributed matrices, traces and bivariate Brownian bridges

Let U be a Haar distributed matrix in U(n) or O(n). We show that after centering the two-parameter process W (s, t) = ∑ i≤⌊ns⌋,j≤⌊nt⌋ |Uij | 2 converges in distribution to the bivariate tied-down Brownian bridge.

متن کامل

Local Spectrum of Truncations of Kronecker Products of Haar Distributed Unitary Matrices

We address the local spectral behavior of the random matrix Π1U ⊗kΠ2U ⊗k∗Π1, where U is a Haar distributed unitary matrix of size n×n, the factor k is at most c0 logn for a small constant c0 > 0, and Π1,Π2 are arbitrary projections on l n k 2 of ranks proportional to n. We prove that in this setting the k-fold Kronecker product behaves similarly to the well-studied case when k = 1. AMS Subject ...

متن کامل

Truncations of random unitary matrices

We analyse properties of non-Hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N > M , distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ...

متن کامل

Truncations of Haar Distributed Matrices, Traces and Bivariate Brownian Bridge

Let U be a Haar distributed matrix in U(n) or O(n). We show that after centering the two-parameter process W (s, t) = ∑ i≤⌊ns⌋,j≤⌊nt⌋ |Uij | 2 converges in distribution to the bivariate tied-down Brownian bridge.

متن کامل

O ct 2 00 3 On asymptotics of large Haar distributed unitary matrices 1

Entries of a random matrix are random variables but a random matrix is equivalently considered as a probability measure on the set of matrices. A simple example of random matrix has independent identically distributed entries. In this paper random unitary matrices are studied whose entries must be correlated. A unitary matrix U = (Uij) is a matrix with complex entries and UU ∗ = UU = I. In term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013